3.124 \(\int (d x)^m (a^2+2 a b x^3+b^2 x^6)^p \, dx\)

Optimal. Leaf size=77 \[ \frac{(d x)^{m+1} \left (\frac{b x^3}{a}+1\right )^{-2 p} \left (a^2+2 a b x^3+b^2 x^6\right )^p \, _2F_1\left (\frac{m+1}{3},-2 p;\frac{m+4}{3};-\frac{b x^3}{a}\right )}{d (m+1)} \]

[Out]

((d*x)^(1 + m)*(a^2 + 2*a*b*x^3 + b^2*x^6)^p*Hypergeometric2F1[(1 + m)/3, -2*p, (4 + m)/3, -((b*x^3)/a)])/(d*(
1 + m)*(1 + (b*x^3)/a)^(2*p))

________________________________________________________________________________________

Rubi [A]  time = 0.0253913, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {1356, 364} \[ \frac{(d x)^{m+1} \left (\frac{b x^3}{a}+1\right )^{-2 p} \left (a^2+2 a b x^3+b^2 x^6\right )^p \, _2F_1\left (\frac{m+1}{3},-2 p;\frac{m+4}{3};-\frac{b x^3}{a}\right )}{d (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*(a^2 + 2*a*b*x^3 + b^2*x^6)^p,x]

[Out]

((d*x)^(1 + m)*(a^2 + 2*a*b*x^3 + b^2*x^6)^p*Hypergeometric2F1[(1 + m)/3, -2*p, (4 + m)/3, -((b*x^3)/a)])/(d*(
1 + m)*(1 + (b*x^3)/a)^(2*p))

Rule 1356

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a
+ b*x^n + c*x^(2*n))^FracPart[p])/(1 + (2*c*x^n)/b)^(2*FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/b)^(2*p), x],
x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[2*p]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (d x)^m \left (a^2+2 a b x^3+b^2 x^6\right )^p \, dx &=\left (\left (1+\frac{b x^3}{a}\right )^{-2 p} \left (a^2+2 a b x^3+b^2 x^6\right )^p\right ) \int (d x)^m \left (1+\frac{b x^3}{a}\right )^{2 p} \, dx\\ &=\frac{(d x)^{1+m} \left (1+\frac{b x^3}{a}\right )^{-2 p} \left (a^2+2 a b x^3+b^2 x^6\right )^p \, _2F_1\left (\frac{1+m}{3},-2 p;\frac{4+m}{3};-\frac{b x^3}{a}\right )}{d (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.0172367, size = 66, normalized size = 0.86 \[ \frac{x (d x)^m \left (\left (a+b x^3\right )^2\right )^p \left (\frac{b x^3}{a}+1\right )^{-2 p} \, _2F_1\left (\frac{m+1}{3},-2 p;\frac{m+1}{3}+1;-\frac{b x^3}{a}\right )}{m+1} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*(a^2 + 2*a*b*x^3 + b^2*x^6)^p,x]

[Out]

(x*(d*x)^m*((a + b*x^3)^2)^p*Hypergeometric2F1[(1 + m)/3, -2*p, 1 + (1 + m)/3, -((b*x^3)/a)])/((1 + m)*(1 + (b
*x^3)/a)^(2*p))

________________________________________________________________________________________

Maple [F]  time = 0.152, size = 0, normalized size = 0. \begin{align*} \int \left ( dx \right ) ^{m} \left ({b}^{2}{x}^{6}+2\,ab{x}^{3}+{a}^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(b^2*x^6+2*a*b*x^3+a^2)^p,x)

[Out]

int((d*x)^m*(b^2*x^6+2*a*b*x^3+a^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )}^{p} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^6+2*a*b*x^3+a^2)^p,x, algorithm="maxima")

[Out]

integrate((b^2*x^6 + 2*a*b*x^3 + a^2)^p*(d*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )}^{p} \left (d x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^6+2*a*b*x^3+a^2)^p,x, algorithm="fricas")

[Out]

integral((b^2*x^6 + 2*a*b*x^3 + a^2)^p*(d*x)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(b**2*x**6+2*a*b*x**3+a**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )}^{p} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^6+2*a*b*x^3+a^2)^p,x, algorithm="giac")

[Out]

integrate((b^2*x^6 + 2*a*b*x^3 + a^2)^p*(d*x)^m, x)